Memory Organization

BUS

A bus is a communication pathway connecting two or more devices. A key characteristic of a bus is that it is a shared transmission medium. Multiple devices connect to the bus, and a signal transmitted by any one device is available for reception by all other devices attached to the bus. If two devices transmit during the same time period, their signals will overlap and become garbled. Thus, only one device at a time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each line is capable of transmitting signals representing binary 1 and binary 0. Over time, a sequence of binary digits can be transmitted across a single line. Taken together, several lines of a bus can be used to transmit binary digits simultaneously (in parallel).

For example, an 8-bit unit of data can be transmitted over eight bus lines. Computer systems contain a number of different buses that provide pathways between components at various levels of the computer system hierarchy. A bus that connects major computer components (processor, memory, I/O) is called a system bus. The most common computer interconnection structures are based on the use of one or more system buses.

Interconnection Structure/Interconnection design

A system bus consists, typically, of from about 50 to hundreds of separate lines. Each line is assigned a particular meaning or function. Although there are many different bus designs, on any bus the lines can be classified into three functional groups: data, address, and control lines.

In addition, there may be power distribution lines that supply power to the attached modules. The data lines provide a path for moving data among system modules. These lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128, or even more separate lines, the number of lines being referred to as the width of the data bus. Because each line can carry only 1 bit at a time, the number of lines determines how many bits can be transferred at a time. The width of the data bus is a key factor in determining overall system performance.

For example, if the data bus is 32 bits wide and each instruction is 64 bits long, then the processor must access the memory module twice during each instruction cycle.

Address Line

The address lines are used to designate the source or destination of the data on the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the address of the desired word on the address lines. Clearly, the width of the address bus determines the maximum possible memory. capacity of the system. Furthermore, the address lines are generally also used to address I/O ports. Typically, the higher-order bits are used to select a particular module on the bus, and the lower-order bits select a memory location or I/O port within the module. For example, on an 8-bit address bus, address 01111111 and below might reference locations in a memory module (module 0) with 128 words of memory, and address 100000000 and above refer to devices attached to an I/O module (module 1).

Control lines

The control lines are used to control the access to and the use of the data and address lines. Because the data and address lines are shared by all components, there must be a means of controlling their use. Control signals transmit both command and timing information among system modules. Timing signals indicate the validity of data and address information. Command signals specify operations to be performed.

Typical control lines include:

- Memory write: Causes data on the bus to be written into the addressed location.
- Memory read: Causes data from the addressed location to be placed on the bus.
- I/O write: Causes data on the bus to be output to the addressed I/O port.
- I/O read: Causes data from the addressed I/O port to be placed on the bus.
- Transfer ACK: Indicates that data have been accepted from or placed on the bus.
- Bus request: Indicates that a module needs to gain control of the bus.
- Bus grant:Indicates that a requesting module has been granted control of the bus
- Interrupt request: Indicates that an interrupt is pending
- Interrupt ACK: Acknowledges that the pending interrupt has been recognized
- Clock: Is used to synchronize operations
- Reset: Initializes all modules

The operation of the bus is as follows. If one module wishes to send data to another, it must do two things:

(1) Obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to request data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to the other module over the appropriate control and address lines. It must then wait for that second module to send the data. Physically, the system bus is actually a number of parallel electrical conductors. In the classic bus arrangement, these conductors are metal lines etched in a card or board (printed circuit board). The bus extends across all of the system components, each of which taps into some or all of the bus lines.

A memory is just like a human brain. It is used to store data and instructions. Computer memory is the storage space in the computer, where data is to be processed and instructions required for processing are stored. The memory is divided into large number of small parts called cells. Each location or cell has a unique address, which varies from zero to memory size minus one. For example, if the computer has $64 \pm 024 = 65536$ memory locations. The address of these locations varies from 0 to 65535.

Memory is primarily of three types –

- Cache Memory
- Primary Memory/Main Memory
- Secondary Memory

Cache Memory

Cache memory is a very high speed semiconductor memory which can speed up the CPU. It acts as a buffer between the CPU and the main memory. It is used to hold those parts of data and program which are most frequently used by the CPU. The parts of data and programs are transferred from the disk to cache memory by the operating system, from where the CPU can access them.

Advantages

The advantages of cache memory are as follows -

- Cache memory is faster than main memory.
- It consumes less access time as compared to main memory.
- It stores the program that can be executed within a short period of time.
- It stores data for temporary use.

Disadvantages

The disadvantages of cache memory are as follows –

- Cache memory has limited capacity.
- It is very expensive.

Primary Memory (Main Memory)

Primary memory holds only those data and instructions on which the computer is currently working. It has a limited capacity and data is lost when power is switched off. It is generally made up of semiconductor device. These memories are not as fast as registers. The data and instruction required to be processed resides in the main memory. It is divided into two subcategories RAM and ROM.

Characteristics of Main Memory

- These are semiconductor memories.
- It is known as the main memory.
- Usually volatile memory.
- Data is lost in case power is switched off.
- It is the working memory of the computer.
- Faster than secondary memories.
- A computer cannot run without the primary memory.

Secondary Memory

This type of memory is also known as external memory or non-volatile. It is slower than the main memory. These are used for storing data/information permanently. CPU directly does not access these memories, instead they are accessed via input-output routines. The contents of secondary memories are first transferred to the main memory, and then the CPU can access it. For example, disk, CD-ROM, DVD, etc.

Characteristics of Secondary Memory

- These are magnetic and optical memories.
- It is known as the backup memory.
- It is a non-volatile memory.
- Data is permanently stored even if power is switched off.
- It is used for storage of data in a computer.
- Computer may run without the secondary memory.
- Slower than primary memories.

***Random Access Memory(RAM)

In random-access memory(RAM) the memory cells can be accessed for information transfer from any desired random location. That is, the process of locating a word in memory is the same and requires an equal amount of time no matter where the cells are located physically in memory.

Communication between a memory and its environment is achieved through data input and output lines, address selection lines, and control lines that specify the direction of transfer.

RAM: Write and Read Operations

The two operations that a random access memory can perform are the write and read operations. The write signal specifies a transfer-in operation and the read signal specifies a transfer-out operation. On accepting one of these control signals. The internal circuits inside the memory provide the desired function. The steps that must be taken for the purpose of transferring a new word to be stored into memory are as follows:

- 1. Apply the binary address of the desired word into the address lines.
- 2. Apply the data bits that must be stored in memory into the data input lines.
- 3. Activate the write input.

The memory unit will then take the bits presently available in the input data lines and store them in the specified by the address lines. The steps that must be taken for the purpose of transferring a stored word out of memory are as follows:

- 1. Apply the binary address of the desired word into the address lines.
- 2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address and apply them into the output data lines. The content of the selected word does not change after reading.

***Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power is being supplied. However, data is lost when the power gets down due to volatile nature. SRAM chips use a matrix of 6-transistors and no capacitors. Transistors do not require power to prevent leakage, so SRAM need not be refreshed on a regular basis.

There is extra space in the matrix, hence SRAM uses more chips than DRAM for the same amount of storage space, making the manufacturing costs higher. SRAM is thus used as cache memory and has very fast access.

Characteristic of Static RAM

- Long life
- No need to refresh
- Faster
- Used as cache memory
- Large size
- Expensive
- High power consumption

***Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order to maintain the data. This is done by placing the memory on a refresh circuit that rewrites the data several hundred times per second. DRAM is used for most system memory as it is cheap and small. All DRAMs are made up of memory cells, which are composed of one capacitor and one transistor.

Characteristics of Dynamic RAM

- Short data lifetime
- Needs to be refreshed continuously
- Slower as compared to SRAM
- Used as RAM
- Smaller in size
- Less expensive
- Less power consumption

Read Only Memory(ROM)

As the name implies, a read-only memory(ROM) is a memory unit that performs the read operation only; it does not have a write capability. This implies that the binary information stored in a ROM is made permanent during the hardware production of the unit and cannot be altered by writing different words into it.

Whereas a RAM is a general-purpose device whose contents can be altered during the computational process, a ROM is restricted to reading words that are permanently stored within the unit. The binary information to be stored, specified by the designer, is then embedded in the unit to form the required interconnection pattern. ROMs come with special internal electronic fuses that can be programmed for a specific configuration. Once the pattern is established, it stays within the unit even when power is turned off and on again.

An m x n ROM is an array of binary cells organized into m words of n bits each. As shown in the block diagram below, a ROM has k address input lines to select one of $2^k = m$ words of memory, and n input lines, one for each bit of the word. An integrated circuit ROM may also have one or more enable inputs for expanding a number of packages into a ROM with larger capacity.

ROM: Different Types of ROM

The required paths in a ROM may be programmed in three different ways.

- 1. The first, mask programming, is done by the semiconductor company during the last fabrication process of the unit. This procedure is costly because the vendor charges the customer a special fee for custom masking the particular ROM. For this reason, mask programming is economical only if a large quantity of the same ROM configuration is to be ordered.
- 2. For small quantities it is more economical to use a second type of ROM called a Programmable Read Only Memory(PROM). The hardware procedure for programming ROMs or PROMs is irreversible, and once programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been established, the unit must be discarded if the bit pattern is to be changed.
- 3. A third type of ROM available is called Erasable PROM or EPROM. The EPROM can be restructured to the initial value even though its fuses have been blown previously. Certain PROMs can be erased with electrical signals instead of ultraviolet light. These PROMs are called Electrically Erasable PROM or EEPROM. Flash memory is a form of EEPROM in which a block of bytes can be erased in a very short duration.

Example applications of EEPROM devices are:

- Storing current time and date in a machine.
- Storing port statuses.

Example of Flash memory device applications are:

- Storing messages in a mobile phone.
- Storing photographs in a digital camera.

Advantages of ROM

The advantages of ROM are as follows –

- Non-volatile in nature
- Cannot be accidentally changed
- Cheaper than RAMs
- Easy to test
- More reliable than RAMs
- Static and do not require refreshing
- Contents are always known and can be verified

Auxiliary Memory

An Auxiliary memory is known as the lowest-cost, highest-capacity and slowest-access storage in a computer system. It is where programs and data are kept for long-term storage or when not in immediate use. The most common examples of auxiliary memories are magnetic tapes and magnetic disks.

Magnetic Disks

A magnetic disk is a type of memory constructed using a circular plate of metal or plastic coated with magnetized materials. Usually, both sides of the disks are used to carry out read/write operations. However, several disks may be stacked on one spindle with read/write head available on each surface.

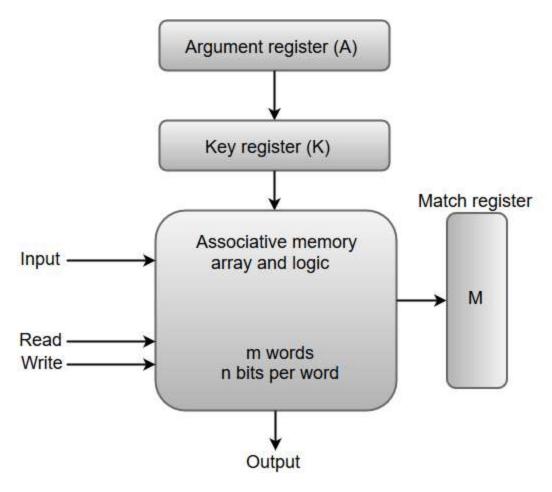
Magnetic Tape

Magnetic tape is a storage medium that allows data archiving, collection, and backup for different kinds of data. The magnetic tape is constructed using a plastic strip coated with a magnetic recording medium.

The bits are recorded as magnetic spots on the tape along several tracks. Usually, seven or nine bits are recorded simultaneously to form a character together with a parity bit.

Magnetic tape units can be halted, started to move forward or in reverse, or can be rewound. However, they cannot be started or stopped fast enough between individual characters. For this reason, information is recorded in blocks referred to as records.

***Associative Memory


An associative memory can be considered as a memory unit whose stored data can be identified for access by the content of the data itself rather than by an address or memory location.

Associative memory is often referred to as Content Addressable Memory (CAM).

When a write operation is performed on associative memory, no address or memory location is given to the word. The memory itself is capable of finding an empty unused location to store the word.

On the other hand, when the word is to be read from an associative memory, the content of the word, or part of the word, is specified. The words which match the specified content are located by the memory and are marked for reading.

The following diagram shows the block representation of an Associative memory.

From the block diagram, we can say that an associative memory consists of a memory array and logic for 'm' words with 'n' bits per word.

The functional registers like the argument register A and key register K each have n bits, one for each bit of a word. The match register M consists of m bits, one for each memory word.

The words which are kept in the memory are compared in parallel with the content of the argument register.

The key register (K) provides a mask for choosing a particular field or key in the argument word. If the key register contains a binary value of all 1's, then the entire argument is compared with each memory word. Otherwise, only those bits in the argument that have 1's in their corresponding position of the key register are compared. Thus, the key provides a mask for identifying a piece of information which specifies how the reference to memory is made.

Cache Memory in Computer Organization

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing with high-speed CPU. Cache memory is costlier than main memory or disk memory but economical than CPU registers. Cache

memory is an extremely fast memory type that acts as a buffer between RAM and the CPU. It holds frequently requested data and instructions so that they are immediately available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The cache is a smaller and faster memory which stores copies of the data from frequently used main memory locations. There are various different independent caches in a CPU, which store instructions and data.

Levels of memory:

- Level 1 or Register
 - It is a type of memory in which data is stored and accepted that are immediately stored in CPU. Most commonly used register is accumulator, Program counter, address register etc.
- Level 2 or Cache memory
 - It is the fastest memory which has faster access time where data is temporarily stored for faster access.
- Level 3 or Main Memory
 - It is memory on which computer works currently. It is small in size and once power is off data no longer stays in this memory.
- Level 4 or Secondary Memory
 - It is external memory which is not as fast as main memory but data stays permanently in this memory.

Cache Performance:

When the processor needs to read or write a location in main memory, it first checks for a corresponding entry in the cache.

- If the processor finds that the memory location is in the cache, a cache hit has occurred and data is read from cache
- If the processor does not find the memory location in the cache, a cache miss has occurred. For a cache miss, the cache allocates a new entry and copies in data from main memory, then the request is fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

We can improve Cache performance using higher cache block size, higher associativity, reduce miss rate, reduce miss penalty, and reduce Reduce the time to hit in the cache.

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained below.

1. Direct Mapping –

The simplest technique, known as direct mapping, maps each block of main memory into only one possible cache line. or

In Direct mapping, assigne each memory block to a specific line in the cache. If a line is previously taken up by a memory block when a new block needs to be loaded, the old block is trashed. An address space is split into two parts index field and a tag field. The cache is used to store the tag field whereas the rest is stored in the main memory. Direct mapping's performance is directly proportional to the Hit ratio.

For purposes of cache access, each main memory address can be viewed as consisting of three fields. The least significant w bits identify a unique word or byte within a block of main memory. In most contemporary machines, the address is at the byte level. The remaining s bits specify one of the 2^s blocks

of main memory. The cache logic interprets these s bits as a tag of s-r bits (most significant portion) and a line field of r bits. This latter field identifies one of the m=2^r lines of the cache.

2. Associative Mapping –

In this type of mapping, the associative memory is used to store content and addresses of the memory word. Any block can go into any line of the cache. This means that the word id bits are used to identify which word in the block is needed, but the tag becomes all of the remaining bits. This enables the placement of any word at any place in the cache memory. It is considered to be the fastest and the most flexible mapping form.

3. Set-associative Mapping –

This form of mapping is an enhanced form of direct mapping where the drawbacks of direct mapping are removed. Set associative addresses the problem of possible thrashing in the direct mapping method. It does this by saying that instead of having exactly one line that a block can map to in the cache, we will group a few lines together creating a set. Then a block in memory can map to any one of the lines of a specific set..Set-associative mapping allows that each word that is present in the cache can have two or more words in the main memory for the same index address. Set associative cache mapping combines the best of direct and associative cache mapping techniques.

Application of Cache Memory –

- 1. Usually, the cache memory can store a reasonable number of blocks at any given time, but this number is small compared to the total number of blocks in the main memory.
- 2. The correspondence between the main memory blocks and those in the cache is specified by a mapping function.

Types of Cache -

• Primary Cache –

A primary cache is always located on the processor chip. This cache is small and its access time is comparable to that of processor registers.

• Secondary Cache –

Secondary cache is placed between the primary cache and the rest of the memory. It is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also housed on the processor chip.

***Locality of reference -

Since size of cache memory is less as compared to main memory. So to check which part of main memory should be given priority and loaded in cache is decided based on locality of reference.

Types of Locality of reference

1. Spatial Locality of reference

This says that there is a chance that element will be present in the close proximity to the reference point and next time if again searched then more close proximity to the point of reference.

2. Temporal Locality of reference

In this Least recently used algorithm will be used. Whenever there is page fault occurs within a word will not only load word in main memory but complete page fault will be loaded because spatial locality of reference rule says that if you are referring any word next word will be referred in its register that's why we load complete page table so the complete block will be loaded.

