Basic Computer Organization and Design

Registers in Computer Architecture

Register is a very fast computer memory, used to store data/instruction in-execution.

A Register is a group of flip-flops with each flip-flop capable of storing one bit of information. An n-

bit register has a group of n flip-flops and is capable of storing binary information of n-bits.

A register consists of a group of flip-flops and gates. The flip-flops hold the binary information and gates
control when and how new information is transferred into a register. Various types of registers are available
commercially. The simplest register is one that consists of only flip-flops with no external gates.

These days registers are also implemented as a register file.

Loading the Registers

The transfer of new information into a register is referred to as loading the register. If all the bits of register are
loaded simultaneously with a common clock pulse than the loading is said to be done in parallel.

***Register Transfer Language

The symbolic notation used to describe the micro-operation transfers amongst registers is called Register
transfer language.

The term register transfer means the availability of hardware logic circuits that can perform a stated micro-
operation and transfer the result of the operation to the same or another register.

The word language is borrowed from programmers who apply this term to programming languages. This
programming language is a procedure for writing symbols to specify a given computational process.
Following are some commonly used registers:

1. Accumulator: This is the most common register, used to store data taken out from the memory.
2. General Purpose Registers: This is used to store data intermediate results during program execution. It
can be accessed via assembly programming.
3. Special Purpose Registers: Users do not access these registers. These registers are for Computer
system,
o MAR: Memory Address Register are those registers that holds the address for memory unit.
o MBR: Memory Buffer Register stores instruction and data received from the memory and sent
from the memory.
o PC: Program Counter points to the next instruction to be executed.

o IR: Instruction Register holds the instruction to be executed.

Register Transfer

Information transferred from one register to another is designated in symbolic form by means of replacement
operator.

R2 — R1

It denotes the transfer of the data from register R1 into R2.

Normally we want the transfer to occur only in predetermined control condition. This can be shown by
following if-then statement: if (P=1) then (R2 « R1)

Here P is a control signal generated in the control section.
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Control Function

A control function is a Boolean variable that is equal to 1 or 0. The control function is shown as:

P: R2 — R1

The control condition is terminated with a colon. It shows that transfer operation can be executed only if P=1.

***Micro-Operations

The operations executed on data stored in registers are called micro-operations. A micro-operation is an
elementary operation performed on the information stored in one or more registers.

Example: Shift, count, clear and load.

Types of Micro-Operations

The micro-operations in digital computers are of 4 types:

Register transfer micro-operations transfer binary information from one register to another.
Arithmetic micro-operations perform arithmetic operations on numeric data stored in registers.

Logic micro-operations perform bit manipulation operation on non-numeric data stored in registers.

M w0 e

Shift micro-operations perform shift micro-operations performed on data.

Arithmetic Micro-Operations
Some of the basic micro-operations are addition, subtraction, increment and decrement.

Add Micro-Operation

It is defined by the following statement:

R3 — RI +R2

The above statement instructs the data or contents of register R1 to be added to data or content of register R2
and the sum should be transferred to register R3.

Subtract Micro-Operation

Let us again take an example:
In subtract micro-operation, instead of using minus operator we take 1's compliment and add 1 to the register
which gets subtracted, i.e R1 - R2 is equivalentto R3 — R1 + R2' + 1

Increment/Decrement Micro-Operation
Increment and decrement micro-operations are generally performed by adding and subtracting 1 to and from the

register respectively.
RI - RI + 1
Rl —>RI-1

Symbolic Designation|Description

R3 — R1+R2 Contents of R1+R2 transferred to R3.

R3 «— R1-R2 Contents of R1-R2 transferred to R3.

R2 «— (R2)' Compliment the contents of R2.

R2 «— (R2)' +1 2's compliment the contents of R2.

R3 «— R1+(R2)'+1 [R1+ the 2's compliment of R2 (subtraction).
R1 «—RI1+1 Increment the contents of R1 by 1.

BCA_CAA_notes | Mr. Tathagata Roy Chowdhury, Asst. Professor, Dept of CSE



R1«—RI1-1 Decrement the contents of R1 by 1.

Logic Micro-Operations
These are binary micro-operations performed on the bits stored in the registers. These operations consider each
bit separately and treat them as binary variables.

Let us consider the X-OR micro-operation with the contents of two registers R1 and R2.
P: Rl «— RI X-OR R2

In the above statement we have also included a Control Function.
Assume that each register has 3 bits. Let the content of R1 be 010 and R2 be 100. The X-OR micro-operation
will be;

***Shift Micro-Operations

These are used for serial transfer of data. That means we can shift the contents of the register to the left or right.
In the shift left operation the serial input transfers a bit to the right most position and in shift right operation
the serial input transfers a bit to the left most position.

There are three types of shifts as follows:

a) Logical Shift

It transfers O through the serial input. The symbol **shl** is used for logical shift left and "'shr** is used for

logical shift right.
RI < she RI
Rl «— she R1

The register symbol must be same on both sides of arrows.

b) Circular Shift
This circulates or rotates the bits of register around the two ends without any loss of data or contents. In this, the
serial output of the shift register is connected to its serial input. **cil** and *"cir'* is used for circular shift left and
right respectively.

c) Arithmetic Shift

This shifts a signed binary number to left or right. An arithmetic shift left multiplies a signed binary number
by 2 and shift left divides the number by 2. Arithmetic shift micro-operation leaves the sign bit unchanged
because the signed number remains same when it is multiplied or divided by 2.

Common Bus System

e The basic computer has eight registers, a memory unit, and a control unit . Paths must be provided to
transfer information from one register to another and between memory and registers.

e The number of wires will be excessive if connections are made between the outputs of each register
and the inputs of the other registers.

o A more efficient scheme for transferring information in a system with many registers is to use a
common bus.

e The connection of the registers and memory of the basic computer to a common bus system is shown
in Fig. below. The outputs of seven registers and memory are connected to the common bus.
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The specific output that is selected for the bus lines at any given time is determined from the binary
value of the selection variables Sz, S1, and So.

The number along each output shows the decimal equivalent of the required binary selection. For
example, the number along the output of DR is 3.

The 16-bit outputs of DR are placed on the bus lines when S;S1Se = 011 since this is the binary value
of decimal 3.

The lines from the common bus are connected to the inputs of each register and the data inputs of the
memory. The particular register whose LD (load) input is enabled receives the data from the bus during
the next clock pulse transition.

The memory receives the contents of the bus when its write input is activated. The memory places its
16-bit output onto the bus when the read input is activated and S>S1So = 111.

Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, AR

and PC, have 12 bits each since they hold a memory address. When the contents of AR or PC are
applied to the 16-bit common bus, the four most significant bits are set to 0's.

When AR or PC receive information from the bus, only the 12 least significant bits are transferred into
the register. The input register INPR and the output register OUTR have 8 bits each and communicate
with the eight least significant bits in the bus.

INPR is connected to provide information to the bus but OUTR can only receive information from the
bus.
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This is because INPR receives a character from an input device which is then transferred to AC. OUTR
receives a character from AC and delivers it to an output device. There is no transfer from OUTR to any
of the other registers.

The 16 lines of the common bus receive information from six registers and the memory unit. The bus
lines are connected to the inputs of six registers and the memory. Five registers have three control
inputs: LD (load), INR (increment), and CLR (clear).

This type of register is equivalent to a binary counter with parallel load and synchronous clear. The
increment operation is achieved by enabling the count input of the counter. Two registers have only a
LD input.

The input data and output data of the memory are connected to the common bus, but the memory
address is connected to AR. Therefore, AR must always be used to specify a memory address.

By using a single register for the address, we eliminate the need for an address bus that would have
been needed otherwise. The content of any register can be specified for the memory data input during a
write operation. Similarly, any register can receive the data from memory after a read operation except
AC.

The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs. One set
of 16-bit inputs come from the outputs of AC . They are used to implement register microoperations
such as complement AC and shift AC .

Another set of 16-bit inputs come from the data register DR. The inputs from DR and AC are used for
arithmetic and logic rnlcrooperations, such as add DR to AC or AND DR to AC.

The result of an addition is transferred to AC and the end carry-out of the addition is transferred to
flip-flop E (extended AC bit). A third set of 8-bit inputs come from the input register INPR.

Note that the content of any register can be applied onto the bus and an operation can be performed in
the adder and logic circuit during the same clock cycle. The clock transition at the end of the cycle
transfers the content of the bus into the designated destination register and the output of the adder and
logic circuit into AC.

For example, the two microoperations

DR «— AC and AC «<— DR

can be executed at the same time. This can be done by placing the content of AC on the bus (with
S2S1So = 100), enabling the LD (load) input of DR, transferring the content of DR through the adder and
logic circuit into AC, and enabling the LD (load) input of AC, all during the same clock cycle.

The two transfers occur upon the arrival of the clock pulse transition at the end of the clock cycle.

Computer Instructions

The basic computer has three instruction code formats, as shown in Fig. below. Each format has 16
bits.

The operation code (opcode) part of the instruction contains three bits and the meaning of the
remaining 13 bits depends on the operation code encountered.

A memory-reference instruction uses 12 bits to specify an address and one bit to specify the addressing
mode I. | is equal to O for direct address and to 1 for indirect address.

The register reference instructions are recognized by the operation code 111 with a 0 in the leftmost
bit (bit 15) of the instruction.
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A register-reference instruction specifies an operation on or a test of the AC register. An operand from
memory is not needed; therefore, the other 12 bits are used to specify the operation or test to be
executed.

Similarly, an input-output instruction does not need a reference to memory and is recognized by the
operation code Il with a 1 in the leftmost bit of the instruction. The remaining 12 bits are used to specify
the type of input-output operation or test performed.

The type of instruction is recognized by the computer control from the four bits in positions 12 through
15 of the instruction. If the three opcode bits in positions 12 though 14 are not equal to 111, the
instruction is a memory-reference type and the bit in position 15 is taken as the addressing mode 1.

If the 3-bit opcode is equal to 111, control then inspects the bit in position 15. If this bit is 0, the

Figure Basic computer instruction formats.

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

15 12 11 0

AR R TR Register operation (Opcode =111, I=0)

(b) Register — reference instruction

15 12 11 0
1 1 1 1 1/0 operation (Opcode =111, I=1)

(¢) Input — output instruction

instruction is a register-reference type. If the bit is 1, the instruction is an input-output type. Note that
the bit in position 15 of the instruction code is designated by the symbol I but is not used as a mode bit
when the operation code is equal to 111.

Only three bits of the instruction are used for the operation code. It may seem that the computer is
restricted to a maximum of eight distinct operations.

However, since register-reference and input-output instructions use the remaining 12 bits as part of the
operation code, the total number of instructions can exceed eight.

In fact, the total number of instructions chosen for the basic computer is equal to 25.

The instructions for the computer are listed in Table below. The symbol designation is a three-letter
word and represents an abbreviation intended for programmers and users. The hexadecimal code is
equal to the equivalent hexadecimal number of the binary code used for the instruction.

By using the hexadecimal equivalent we reduced the 16 bits of an instruction code to four digits with
each hexadecimal digit being equivalent to four bits.

A memory-reference instruction has an address part of 12 bits. The address part is denoted by three x's
and stand for the three hexadecimal digits corresponding to the 12-bit address.

The last bit of the instruction is designated by the symbol I. When | = 0, the last four bits of an
instruction have a hexadecimal digit equivalent from 0 to 6 since the last bit is 0.
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e« When I = |, the hexadecimal digit equivalent of the last four bits of the instruction ranges from 8 to E
since the last bit is I. Register-reference instructions use 16 bits to specify an operation. The leftmost
four bits are always 0111, which is equivalent to hexadecimal 7.

e The other three hexadecimal digits give the binary equivalent of the remaining 12 bits. The input-
output instructions also use all 16 bits to specify an operation. The last four bits are always 1111,
equivalent to hexadecimal F.

TABLE Basic Compurter Instrucrions

Hexadecimal code

Symbol =0 Ir=1 Description

AND Ohoxx Baoox AND memory word to AC
ADD 1oex Qa0 Add memory word to AC

LDA 2xxx Ao Load memory word to AC
STA 30ex Boaoox Store content of . AC in memory
BUN 4xoxx o Branch unconditionally

BSA Saoex Draexex Branch and save return address
ISZ E00x Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE T400 Clear E

ChA 7200 Complement AC

CME 7100 Complement E

CIR TOBO Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP FEOD Input character to .AC

ouT F400 QOutput character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

IOMN FO80 Interrupt on

I1OF F040 Interrupt off

**|nstruction Set Completeness

e A computer should have a set of instructions so that the user can construct machine language
programs to evaluate any function that is known to be computable.

e The set of instructions are said to be complete if the computer includes a sufficient number of
instructions in each of the following categories:

« 1. Arithmetic, logical, and shift instructions

e 2. Instructions for moving information to and from memory and processor
e registers

e 3. Program control instructions together with instructions that check
 status conditions
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4. Input and output instructions

e Arithmetic, logical, and shift instructions provide computational capabilities for processing the type
of data that the user may wish to employ.

e The bulk of the binary information in a digital computer is stored in memory, but all computations are
done in processor registers.

o Therefore, the user must have the capability of moving information between these two units. Decision
making capabilities are an important aspect of digital computers.

o For example, two numbers can be compared, and if the first is greater than the second, it may be
necessary to proceed differently than if the second is greater than the first.

e Program control instructions such as branch instructions are used to change the sequence in which the
program is executed. Input and output instructions are needed for communication between the computer
and the user.

e Programs and data must be transferred into memory and results of computations must be transferred
back to the user. The instructions listed in Table above constitute a minimum set that provides all the
capabilities mentioned above.

e There is one arithmetic instruction, ADD, and two related instructions, complement AC(CMA) and
increment AC(INC).

« With these three instructions we can add and subtract binary numbers when negative numbers are in
signed-2's complement representation. The circulate instructions, CIR and CIL, can be used for
arithmetic shifts as well as any other type of shifts desired.

o Multiplication and division can be performed using addition, subtraction, and shifting. There are three
logic operations: AND, complement AC(CMA), and clear AC(CLA).

e The AND and complement provide a NAND operation. It can be shown that with the NAND
operation it is possible to implement all the other logic operations with two variables.

e Moving information from memory to AC is accomplished with the load AC(LDA) instruction. Storing
information from AC into memory is done with the store AC(STA) instruction.

e The branch instructions BUN, BSA, and ISZ, together with the four skip instructions, provide
capabilities for program control and checking of status conditions. The input (INP) and output (OUT)
instructions cause information to be transferred between the computer and external devices.

« Although the set of instructions for the basic computer is complete, it is not efficient because
frequently used operations are not performed rapidly. An efficient set of instructions will include such
instructions as subtract, multiply, OR, and exclusive-OR.

***Timing and Control

e The timing for all registers in the basic computer is controlled by a master clock generator.

e The clock pulses are applied to all flip-flops and registers in the system, including the flip-flops and
registers in the control unit.

e The clock pulses do not change the state of a register unless the register is enabled by a control signal.

e The control signals are generated in the control unit and provide control inputs for the multiplexers in
the common bus, control inputs in processor registers, and microoperations for the accumulator.

« There are two major types of control organization: hardwired control and microprogrammed control.
In the hardwired organization, the control logic is implemented with gates, flip-flops, decoders, and
other digital circuits.

e It has the advantage that it can be optimized to produce a fast mode of operation.

« In the microprogrammed organization, the control information is stored in a control memory. The
control memory is programmed to initiate the required sequence of microoperations.
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e A hardwired control, as the name implies, requires changes in the wiring among the various
components if the design has to be modified or changed. In the microprogrammed control, any required
changes or modifications can be done by updating the microprogram in control memory.

e The block diagram of the control unit is shown in Fig. below. It consists of two decoders, a sequence
counter, and a number of control logic gates. An instruction read from memory is placed in the
nstruction register (IR).

e The position of this register in the common bus system is indicated in Fig. previously seen. The
instruction register is shown again in Fig. below, where it is divided into three parts: the I bit, the
operation code, and bits 0 through 11.

e The operation code in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of the
decoder are designated by the symbols DO through D7

e The subscripted decimal number is equivalent to the binary value of the corresponding operation
code. Bit 15 of the instruction is transferred to a flip-flop designated by the symbol I.

« Bits 0 through 11 are applied to the control logic gates. The 4-bit sequence counter can count in binary
from 0 through 15. The outputs of the counter are decoded into 16 timing signals TO through T15

e The sequence counter SC can be incremented or cleared synchronously

e . Most of the time, the counter is incremented to provide the sequence of timing signals out of the 4 x
16 decoder. Once in awhile, the counter is cleared to 0, causing the next active timing signal to be TO.

e As an example, consider the case where SC is incremented to provide timing signals TO, T1, T2, T3,
and T4 in sequence. At time T4, SC is cleared to O if decoder output D3 is active.

e This is expressed symbolically by the statement D3T4: SC « 0. The timing diagram of Fig. below
shows the time relationship of the control signals.

e The sequence counter SC responds to the positive transition of the clock. Initially, the CLR input of SC
is active. The first positive transition of the

Insruction regisser (IR)
| 1s | 1« 313 12 | 11 -0 ]
Oxher inpuns
v v L 4 l
3IxE
Aecoler
T 65 S 4 3 =2 1 O
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b~ =g -
gmics
Tas _
Te
| o I
s 33 .- 2 3 ©°
- x 16
dovades
+ B 4
bl - T (ENR)
moquence |- Clear (CLR)
[ an § <t ———— Clock

Figore Controd unit of basic coampaxrs.

e clock clears SC to 0, which in turn activates the timing signal TO out of the decoder. TO is active during
one clock cycle.
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The positive clock transition labeled TO in the diagram will trigger only those registers whose control
inputs are connected to timing signal TO.

SC is incremented with every positive clock unless its CLR input is active.

This produces the sequence of timing signals T0,T1,T2,T3,T4 and so on, as shown in the diagram.
(Note the relationship between the timing signal and its corresponding positive clock transition.)

If SC is not cleared, the timing signals will continue with Ts, Te up to T15 and back to To.

Ty T T, Ty Ts Ty

e LM

To _! ‘\_
T, [

\
n —
" ﬂ
r ‘.

w ) [

Figure Example of control timing signals.

The last three waveforms in Fig. above show how SC is cleared when D3T4 = 1. Output D3 from the
operation decoder becomes active at the end of timing signal T2

When timing signal T4 becomes active, the output of the AND gate that implements the control
function D3T4 becomes active.

This signal is applied to the CLR input of SC. On the next positive clock transition (the one marked
T4 in the diagram) the counter is cleared to 0. This causes the timing signal TO to become active instead
of T5 that would have been active if SC were incremented instead of cleared.

A memory read or write cycle will be initiated with the rising edge of a timing signal. It will be
assumed that a memory cycle time is less than the clock cycle time. According to this assumption, a
memory read or write cycle initiated by a timing signal will be completed by the time the next clock
goes through its positive transition.

The clock transition will then be used to load the memory word into a register. This timing relationship
is not valid in many computers because the memory cycle time is usually longer than the processor
clock cycle.

In such a case it is necessary to provide wait cycles in the processor until the memory word is available.
To facilitate the presentation, we will assume that a wait period is not necessary in the basic computer.
To fully comprehend the operation of the computer, it is crucial that one understands the timing
relationship between the clock transition and the timing signals. For example, the register transfer
statement TO: AR «— PC specifies a transfer of the content of PC into AR if timing signal TO is active.
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TO is active during an entire clock cycle interval. During this time the content of PC is placed onto the
bus (with S2S1So = 010) and the LD (load) input of AR is enabled. The actual transfer does not occur
until the end of the clock cycle when the clock goes through a positive transition.

This same positive clock transition increments the sequence counter SC from 0000 to 0001 . The next
clock cycle has T1 active and TO inactive.

***|nstruction Cycle

A program residing in the memory unit of the computer consists of a sequence of instructions. The
program is executed in the computer by going through a cycle for each instruction. Each instruction
cycle in turn is subdivided into a sequence of subcycles or phases. In the basic computer each instruction
cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect
address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute the next
instruction. This process continues indefinitely unless a HALT instruction is encountered.
Fetch and Decode
1. Initially, the program counter PC is loaded with the address of the first instruction in the
program.
2. The sequence counter SC is cleared to 0, providing a decoded timing signal TO. After each
clock pulse, SC is incremented by one, so that the timing signals go through a sequence TO, T1,
T2, and so on.
3. The rnicrooperations for the fetch and decode phases can be specified by the following register
transfer statements.

TO: AR « PC
T1: IR « M[AR], PC « PC + 1
T2: DO, ...., D7 < Decode IR(12-14), AR « IR(0-11), T — IR(15)

ONl s

Since only AR is connected to the address inputs of memory, it is necessary to transfer the
address from PC to AR during the clock transition associated with timing signal TO. The
instruction read from memory is then placed in the instruction register IR with the clock
transition associated with timing signal T1.
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Figure Register ransfers for the ferch phase.

. At the same time, PC is incremented by one to prepare it for the address of the next instruction
in the program. At time T2, the operation code in IR is decoded, the indirect bit is transferred to
flip-flop I, and the address part of the instruction is transferred to AR .

Note that SC is incremented after each clock pulse to produce the sequence TO, T1, and T2
Figure above shows how the first two register transfer statements are implemented in the bus
system.

To provide the data path for the transfer of PC to AR we must apply timing signal TO to achieve
the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs
S2S1Se equal to 010.

16.

17.
18.

19
20

2. Transfer the content of the bus to AR by enabling the LD input of AR .

The next clock transition initiates the transfer from PC to AR since TO = 1. In order to
implement the second statement : T1: IR «— M[AR], PC < PC + 1 it is necessary to use timing
signal T1 to provide the following connections in the bus system.

. 1. Enable the read input of memory.
. 2. Place the content of memory onto the bus by making S2S:1So = 111.
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21. 3. Transfer the content of the bus to IR by enabling the LD input of IR.
22. 4. Increment PC by enabling the INR input of PC.

23. The next clock transition initiates the read and increment operations since T1 = 1.

24. Figure above duplicates a portion of the bus system and shows how TO and T1 are connected to
the control inputs of the registers, the memory, and the bus selection inputs. Multiple input OR
gates are included in the diagram because there are other control functions that will initiate
similar operations.

Determine the Type of Instruction

« The timing signal that is active after the decoding is Ts. During time Tz, the control unit determines the
type of instruction that was just read from memory.
e The flowchart of Fig. below presents an initial configuration for the instruction cycle and shows how
the control determines the instruction type after the decoding.
e The three possible instruction types available in the basic computer are specified in Fig. on basic
computer formats.

Figure Basic computer instruction formats.

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

15 12 11 0

AR URIRR YA Register operation (Opcode =111, [=0)

(b) Register — reference instruction
15 12 11 0
1 1 1 1 1/0 operation (Opcode = 111, I=1)

(¢) Input — output instruction

« Decoder output D7 is equal to 1 if the operation code is equal to binary 111. From Fig. on basic
computer formats we determine that if D7 = 1, the instruction must be a

BCA_CAA_notes | Mr. Tathagata Roy Chowdhury, Asst. Professor, Dept of CSE

13



Dhecode operation code i AR (12 — 140
AR «— MR 00— 11 §F— R (15)

{RBegister or LO) = 1 /E_ =0 {Memory-reference)

<e>-
=10 dregisier) {imdirect] ='I./J\='U {flirect)
I

T - Ts - Ty T
. Emecuse _ Emecute |.-!|.R4— AMLAR] ! Nothing I
iF P - ot regisver-rel eremos
[ ET T B ] imSCruscIBon
S5C «— 0O 5T «— 0 4
Execure
e ry-ref erence
ISl ruclion
S +— D

Fipure Flowchart for instructon cyele [inirial configuration).
register-reference or input-output type.

If D7 = 0, the operation code must be one of the other seven values 000 through 110, specifying a
memory-reference instruction.

Control then inspects the value of the first bit of the instruction, which is now available in flip-flop I.
If D7 =0 and | = 1, we have a memory reference instruction with an indirect address.

It is then necessary to read the effective address from memory. The microoperation for the indirect
address condition can be symbolized by the register transfer statement : AR «— M[AR]

Initially, AR holds the address part of the instruction. This address is used during the memory read
operation. The word at the address given by AR is read from memory and placed on the common bus.
The LD input of AR is then enabled to receive the indirect address that resided in the 12 least significant
bits of the memory word.

The three instruction types are subdivided into four separate paths. The selected operation is activated
with the clock transition associated with timing signal Tz. This can be symbolized as follows:

D7 IT3: AR «— M[AR]

D'7 I'T3: Nothing

D7 I'T3: Execute a register-reference instruction
D-IT3: Execute an input-output instruction

14

When a memory-reference instruction with | = 0 is encountered, it is not necessary to do anything
since the effective address is already in AR.
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However, the sequence counter SC must be incremented when D'z Tz = 1, so that the execution of the
memory-reference instruction can be continued with timing variable T4

A register-reference or input-output instruction can be executed with the clock associated with
timing signal Ts. After the instruction is executed, SC is cleared to 0 and control returns to the fetch
phase with To = 1.

Note that the sequence counter SC is either incremented or cleared to 0 with every positive clock
transition. We will adopt the convention that if SC is incremented, we will not write the statement SC «—
SC + 1, but it will be implied that the control goes to the next timing signal in sequence. When SC is to
be cleared, we will include the statement SC «— 0.

The register transfers needed for the execution of the register-reference instructions are presented in
this section.

Register-Reference Instructions

Register-reference instructions are recognized by the control when D7 =1 and | = 0.

These instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.

These 12 bits are available in IR(0-11). They were also transferred to AR during time Ta.

The control functions and microoperations for the register-reference instructions are. listed in Table
below. These instructions are executed with the clock transition associated with timing variable Ts.Each
control function needs the Boolean relation D7I'T3, which we designate for convenience by the symbol
r.
The control function is distinguished by one of the bits in IR(0-11). By assigning the symbol B to bit i
of IR, all control functions can be simply denoted by rBi.

For example, the instruction CLA has the hexadecimal code 7800, which gives the binary equivalent
0111 1000 0000 0000. The first bit is a zero and is equivalent to I'.

The next three bits constitute the operation code and are recognized from decoder output D7. Bit 11 in
IR is I and is recognized from B11. The control function that initiates the microoperation for this
instruction is D7I'T3B11 = rBi1.

The execution of a register-reference instruction is completed at time Ta.

The sequence counter SC is cleared to 0 and the control goes back to fetch the next instruction with
timing signal To.

The first seven register-reference instructions perform clear, complement, circular shift, and increment
microoperations on the AC or E registers.

The next four instructions cause a skip of the next instruction in sequence when a stated condition is
satisfied. The skipping of the instruction is achieved by incrementing PC once again (in addition, it is
being incremented during the fetch phase at time T1).

The condition control statements must be recognized as part of the control conditions .

The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of
AC is zero (AC = 0) if all the flip-flops of the register are zero. The HLT instruction clears a start-stop
flip-flop S and stops the sequence counter from counting. To restore the operation of the computer, the
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start-stop flip-flop must be set manually.
TABLE Execution of Register-Reference Instructions

D,I'T; = r (common to all register-reference instructions)
IR(i) = B; [bit in IR(0-11) that specifies the operation]
r: SC<0 Clear SC
CLA rBy;: AC<«0 Clear AC
CLE 7By E<0 Clear E
CMA rBy: AC<AC Complement A
CME rBs: E<«E Complement E

CIR rB;: ACe<shr AC, AC(15)«<E, E < AC(0) Circulate right
CIL 7rBs: AC<shl AC, AC(0)«—E, E<«AC(15) Circulate left
INC rBs: AC<AC +1 Increment AC
SPA rBs: If (AC(15) = 0) then (PC«PC + 1) Skip if positive
SNA rB;: If (AC(15) = 1) then (PC«PC + 1)  Skip if negative

SZA rB,: If (AC = 0) then PC«<PC + 1) Skip if AC zerc
SZE B,: If (E = 0) then (PC«PC + 1) Skip if E zero
HLT rB,: S <0 (S is a start—stop flip-flop) Halt computer

***NMemory-Reference Instructions

In order to specify the rnicrooperations needed for the execution of each instruction, it is necessary that

the function that they are intended to perform be defined precisely.

e We will now show that the function of the memory-reference instructions can be defined precisely by
means of register transfer notation.

e Table below lists the seven memory-reference instructions. The decoded output Di fori =0, 1, 2, 3, 4, 5,
and 6 from the operation decoder that belongs to each instruction is included in the table.

e The effective address of the instruction is in the address register AR and was placed there during timing
signal T2 when I = 0, or during timing signal Tz when | = 1.

e The execution of the memory-reference instructions starts with timing signal T4. The symbolic

description of each instruction is specified in the table in terms of register transfer notation.

The actual execution of the instruction in the bus system will require a sequence of microoperations.

This is because data stored in memory cannot be processed directly.

The data must be read from memory to a register where they can be operated on with logic circuits.

We now explain the operation of each instruction and list the control functions and microoperations

needed for their execution.

16
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TABLE Memory-Reference Instructions

Operation

Symbol decoder Symbolic description
AND D, AC«—AC "\ M[AR]

ADD D, AC<«AC + M[AR], E <« Cou
LDA D, AC «<M[AR]

STA D, M[AR] < AC

BUN D, PC<— AR

BSA Ds M[AR]«<PC, PC<AR +1
ISZ Ds M[AR] < M[AR] + 1,

If M[AR] + 1 = 0 then PC«—PC + 1

Control Flowchart

A flowchart showing all microoperations for the execution of the seven memory-reference instructions
is shown in Fig. below.

The control functions are indicated on top of each box.

The microoperations that are performed during time T4, Ts, or Te depend on the operation code value.
This is indicated in the flowchart by six different paths, one of which the control takes after the
instruction is decoded.

The sequence counter SC is cleared to 0 with the last timing signal in each case.

This causes a transfer of control to timing signal To to start the next instruction cycle.

Note that we need only seven timing signals to execute the longest instruction (ISZ).

The computer can be designed with a 3-bit sequence counter. The reason for using a 4-bit counter for
SC is to provide additional timing signals for other instructions that are presented in the problems
section.

17

BCA_CAA_notes | Mr. Tathagata Roy Chowdhury, Asst. Professor, Dept of CSE



Memory — ref erence instraction

AND ADD LDA 5TA
1r D{.T] T D.T‘ l|r D:T‘ i D_\T.
DR « M[AR)] 1 | DR« M [MAR] | | DR+ M [AR] M [AR] = AC
S0+ 0
T DT T T, 1 0,1
AC — ACH DR AC — AC &« DR AC +— DR
E —0Cyy
SC—0 SC 0 SC+10
BUN BSA 152
f DT, ¥ D.T, Tt DT
PC 4= AR M [AR]) — PC | DR « M [AR] l
SCe0 AR AR +
Y DsTg. L) ﬂng,
PC = AR DR « DR+ 1
SC«0
Y .Dg]—‘

M [AR] — DR
If (DR =0
then (PC « PC+ 1)
SC«0

Figure Flowchart for memory-reference instructions.

***|nput-Output and Interrupt

e A computer can serve no useful purpose unless it communicates with the external environment. To
demonstrate the most basic requirements for input and output communication, we will use as an
illustration a terminal unit with a keyboard and printer.

e Input-Output Configuration

wmn

o

The terminal sends and receives serial information. Each quantity of information has eight bits
of an alphanumeric code.

The serial information from the keyboard is shifted into the input register INPR.

The serial information for the printer is stored in the output register OUTR.

These two registers communicate with a communication interface serially and with the AC in
parallel. The input-output configuration is shown in Fig. below. The transmitter interface
receives serial information from the keyboard and transmits it to INPR.

The receiver interface receives information from OUTR and sends it to the printer serially.
The input register INPR consists of eight bits and holds an alphanumeric input information.
The 1-bit input flag FGI is a control flip-flop. The flag bit is set to 1 when new information is

18
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available in the input device and is cleared to 0 when the information is accepted by the
compulter.

7. The flag is needed to synchronize the timing rate difference between the input device and the
compulter.

8. The process of information transfer is as follows. Initially, the input flag FGI is cleared to 0.
When a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR and the
input flag FGI is set to 1.

9. Aslong as the flag is set, the information in INPR cannot be changed by striking another key.
The computer checks the flag bit; if it is 1, the information from INPR is transferred in parallel
into AC and FGI is cleared to 0. Once the flag is cleared, new information can be shifted into
INPR by striking another key.

10. The output register OUTR works similarly but the direction of information flow is reversed.
Initially, the output flag FGO is set to 1.

11. The computer checks the flag bit; if it is 1, the information from AC is transferred in parallel to
OUTR and FGO is cleared to 0. The output device accepts the coded information, prints the
corresponding character, and when the operation is completed, it sets FGO to 1.

12. The computer does not load a new character into OUTR when FGO is 0 because this condition
indicates that the output device is in the process of printing the character.

e Input-Output Instructions

1. Input and output instructions are needed for transferring information to and from AC register,
for checking the flag bits, and for controlling the interrupt facility.
2. Input-output instructions have an operation code 1111 and are recognized by the control when
D7 =1and I = 1. The remaining bits of the instruction specify the particular operation.
3. The control functions and microoperations for the input-output instructions are listed in Table
below. These instructions are executed with the clock transition associated with timing signal Tz.
Each control function needs a Boolean relation D7ITs, which we designate for convenience by
the symbol p. The control function is distinguished by one of the bits in IR(6-11).
4. By assigning the symbol B; to bit i of IR, all control functions

Figure Input-output configuration.

Input — output Serial Computer
terminal communication registers and
interface flip-flops
FGO
Printer - STl I ourr |
I interface i | |
4’1 AC I—

= Transmitter
Keyboard - intert: S INPR

FGr

can be denoted by pBi for i = 6 though 11. The sequence counter SC is cleared to 0 when p =
D7ITs = 1.
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5. The INP instruction transfers the input information from INPR into the eight low-order bits of
AC and also clears the input flag to 0.

6. The OUT instruction transfers the eight least significant bits of AC into the output register
OUTR and clears the output flag to 0.

7. The next two instructions in Table above check the status of the flags and cause a skip of the
next instruction if the flag is 1.

8. The instruction that is skipped will normally be a branch instruction to return and check the flag
again.

9. The branch instruction is not skipped if the flag is 0. If the flag is 1, the branch instruction is
skipped and an input or output instruction is executed.

10. The last two instructions set and clear an interrupt enable flipflop IEN. The purpose of IEN is
explained in conjunction with the interrupt operation

**8Program Interrupt

The process of communication just described is referred to as programmed control transfer. The
computer keeps checking the flag bit, and when it finds it set, it initiates an information transfer.

The difference of information flow rate between the computer and that of the input-output device
makes this type of transfer inefficient. To see why this is inefficient, consider a computer that can go
through an instruction cycle in 1 ps.

Assume that the input-output device can transfer information at a maximum rate of 10 characters per
second. This is equivalent to one character every 100,000 us. Two instructions are executed when the
computer checks the flag bit and decides not to transfer the information.

This means that at the maximum rate, the computer will check the flag 50,000 times between each
transfer. The computer is wasting time while checking the flag instead of doing some other useful
processing task.

An alternative to the programmed controlled procedure is to let the external device inform the
computer when it is ready for the transfer. In the meantime the computer can be busy with other tasks.
This type of transfer uses the interrupt facility.

While the computer is running a program, it does not check the flags. However, when a flag is set, the
computer is momentarily interrupted from proceeding with the current program and is informed of the
fact that a flag has been set.

The computer deviates momentarily from what it is doing to take care of the input or output transfer. It
then returns to the current program to continue what it was doing before the interrupt.

The interrupt enable flip-flop IEN can be set and cleared with two instructions. When IEN is cleared
to 0 (with the IOF instruction), the flags cannot interrupt the computer. When IEN is set to 1 (with the
ION instruction), the computer can be interrupted.

These two instructions provide the programmer with the capability of making a decision as to whether
or not to use the interrupt facility.

BCA_CAA_notes | Mr. Tathagata Roy Chowdhury, Asst. Professor, Dept of CSE

20



TABLE Input-Output Instructions

D,ITy = p (common to all input—output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction]

p: SC<«0 Clear SC
INP pBu: AC(0-7)«<—INPR, FGI<«0 Input character
OUT pB,:: OUTR<«AC(0-7), FGO «0 Output character

SKI pBs:  If (FGI = 1) then (PC«—PC + 1)  Skip on input flag

SKO pBs: If (FGO = 1) then (PC«PC + 1) Skip on output flag
ION  pB; IEN<1 Interrupt enable on
IOF pBs: IEN <0 Interrupt enable off

The way that the interrupt is handled by the computer can be explained by means of the flowchart of
Fig. above. An interrupt flip-flop R is included in the computer. When R = 0, the computer goes through
an instruction cycle.

During the execute phase of the instruction cycle IEN is checked by the control. If it is O, it indicates
that the programmer does not want to use the interrupt, so control continues with the next instruction
cycle. If IEN is 1, control checks the flag bits.

If both flags are 0, it indicates that neither the input nor the output registers are ready for transfer of
information. In this case, control continues with the next instruction cycle. If either flag is set to 1 while
IEN = 1, flip-flop R is set to 1.

At the end of the execute phase, control checks the value of R, and if it is equal to 1, it goes to an
interrupt cycle instead of an instruction cycle. The interrupt cycle is a hardware implementation of a
branch and save return address operation.

The return address available in PC is stored in a specific location where it can be found later when the
program returns to the instruction at which it was interrupted.

This location may be a processor register, a memory stack, or a specific memory location. Here we
choose the memory location at address 0 as the place for storing the return address. Control then inserts
address 1 into PC and clears IEN and R so that no more interruptions can occur until the interrupt
request from the flag has been serviced.

An example that shows what happens during the interrupt cycle is shown in Fig. below. Suppose that an
interrupt occurs and R is set to 1 while the control is executing the instruction at address 255. At this
time, the return address 256 is in PC .

The programmer has previously placed an input-output service program in memory starting from
address 1120 and a BUN 1120 instruction at address 1. This is shown in Part (a) in Fig. below. When
control reaches timing signal To and finds that R = 1, it proceeds with the interrupt cycle.

The content of PC (256) is stored in memory location 0, PC is setto 1, and R is cleared to 0. At the
beginning of the next instruction cycle, the instruction that is read from memory is in address 1 since
this is the content of PC.

The branch instruction at address 1 causes the program to transfer to the input-output service program
at address 1120. This program checks the flags, determines which flag is set, and then transfers the
required input or output information.

Once this is done, the instruction ION is executed to set IEN to 1 (to enable further interrupts), and the
program returns to the location where it was interrupted. This is shown in Part (b) in Fig. below.

The instruction that returns the computer to the original place in the main program is a branch indirect
instruction with an address part of 0. This instruction is placed at the end of the UO service program.
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o After this instruction is

Instruction cycle =0 /L =1 Imterrupt cycle

Fetch and decode
instruction

Store retum address
in location 0
M [0] « PC

Execute ]
nsiruction
Branch to location 1
PC 1
[EN « 0
Re0

] L 1|' k |

Figure Flowchart for interrupt cycle.

read from memory during the fetch phase, control goes to the indirect phase (because | = 1) to read the
effective address.

o The effective address is in location 0 and is the return address that was stored there during the previous
interrupt cycle. The execution of the indirect BUN instruction results in placing into PC the return
address from location 0.

***Interrupt Cycle

e The interrupt cycle is initiated after the last execute phase if the interrupt flip-flop R is equal to 1. This
flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to 1.

« This can happen with any clock transition except when timing signals To, T1 or T» are active. The
condition for setting flip-flop R to 1 can be expressed with the following register transfer
statement: T'OT'1T2(IEN)(FGI+FGO):R«1

e The symbol + between FGI and FGO in the control function designates a logic OR operation. This is
ANDed with IEN and T'0T'1T"2.

« We now modify the fetch and decode phases of the instruction cycle. Instead of using only timing
signals To, T1 or T2 (as shown in Figure in Section - Determine the Type of Instruction) we will AND
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the three timing signals with R’ so that the fetch and decode phases will be recognized from the three
control functions R'To, R'T1 and R'T>.

The reason for this is that after the instruction is executed and SC is cleared to 0, the control will go
through a fetch phase only if R = 0. Otherwise, if R = 1, the control will go through an interrupt cycle.
The interrupt cycle stores the return address (available in PC) into memory location 0, branches to
memory location 1, and clears IEN, R, and SC to 0. This can be done with the following sequence of
microoperations:

RTo: AR < 0, TR < PC
RTi: M[AR] « TR, PC «— 0
RT2: PC—PC+1,IEN«—0,R«—0,SC«0

During the first timing signal AR is cleared to 0, and the content of PC is transferred to the temporary
register TR.

With the second timing signal, the return address is stored in memory at location 0 and PC is cleared to
0. The third timing signal increments PC to 1, clears IEN and R, and control goes back to To by clearing
SC to 0.

The beginning of the next instruction cycle has the condition R'To and the content of PC is equal to 1.
The control then goes through an instruction cycle that fetches and executes the BUN instruction in
location 1.
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