
Computer Organization & Architecture
Lecture #19

Input/Output

The computer system’s I/O architecture is its interface to the outside world. This
architecture is designed to provide a systematic means of controlling interaction
with the outside world and to provide the operating system with the information it
needs to manage I/O activity effectively.

There are three principal I/O techniques: programmed I/O, in which I/O occurs
under he direct and continuous control of the program requesting the I/O operation;
interrupt-driven I/O, in which a program issues an I/O command and then
continues to execute, until it is interrupted by the I/O hardware to signal the end of
the I/O operations; and direct memory access (DMA), in which a specialized I/O
processor takes over control of an I/O operation to move a large block of data.

Two important examples of external I/O interfaces are FireWire and Infiniband.

Peripherals and the System Bus
• There are a wide variety of peripherals each with varying methods of operation

o Impractical to for the processor to accommodate all
• Data transfer rates are often slower than the processor and/or memory

o Impractical to use the high-speed system bus to communicate directly
• Data transfer rates may be faster than that of the processor and/or memory

o This mismatch may lead to inefficiencies if improperly managed
• Peripheral often use different data formats and word lengths

Purpose of I/O Modules
• Interface to the processor and memory via the system bus or control switch
• Interface to one or more peripheral devices

External Devices

External device categories
• Human readable: communicate with the computer user – CRT
• Machine readable: communicate with equipment – disk drive or tape drive
• Communication: communicate with remote devices – may be human readable

or machine readable

The External Device – I/O Module
• Control signals: determine the function that will be performed
• Data: set of bits to be sent of received
• Status signals: indicate the state of the device
• Control logic: controls the device’s operations
• Transducer: converts data from electrical to other forms of energy
• Buffer: temporarily holds data being transferred

Keyboard/Monitor

• Most common means of computer/user interaction
• Keyboard provides input that is transmitted to the computer
• Monitor displays data provided by the computer
• The character is the basic unit of exchange
• Each character is associated with a 7 or 8 bit code

Disk Drive

• Contains electronics for exchanging data, control, and status signals with an I/O

module
• Contains electronics for controlling the disk read/write mechanism
• Fixed-head disk – transducer converts between magnetic patterns on the disk

surface and bits in the buffer
• Moving-head disk – must move the disk arm rapidly across the surface

I/O Modules

Module Function

• Control and timing
• Processor communication
• Device communication
• Data buffering
• Error detection

I/O control steps
• Processor checks I/O module for external device status
• I/O module returns status
• If device ready, processor gives I/O module command to request data transfer
• I/O module gets a unit of data from device
• Data transferred from the I/O module to the processor

Processor communication
• Command decoding: I/O module accepts commands from the processor sent

as signals on the control bus
• Data: data exchanged between the processor and I/O module over the data bus
• Status reporting: common status signals BUSY and READY are used because

peripherals are slow
• Address recognition: I/O module must recognize a unique address for each

peripheral that it controls

I/O module communication
• Device communication: commands, status information, and data
• Data buffering: data comes from main memory in rapid burst and must be

buffered by the I/O module and then sent to the device at the device’s rate
• Error detection: responsible for reporting errors to the processor

Typical I/O Device Data Rates

I/O Module Structure

Block Diagram of an I/O Module

• Module connects to the computer through a set of signal lines – system bus
• Data transferred to and from the module are buffered with data registers
• Status provided through status registers – may also act as control registers
• Module logic interacts with processor via a set of control signal lines
• Processor uses control signal lines to issue commands to the I/O module
• Module must recognize and generate addresses for devices it controls
• Module contains logic for device interfaces to the devices it controls

• I/O module functions allow the processor to view devices is a simple-minded

way
• I/O module may hide device details from the processor so the processor only

functions in terms of simple read and write operations – timing, formats, etc…
• I/O module may leave much of the work of controlling a device visible to the

processor – rewind a tape, etc…

I/O channel or I/O processor
• I/O module that takes on most of the detailed processing burden
• Used on mainframe computers

I/O controller of device controller
• Primitive I/O module that requires detailed control
• Used on microcomputers

Programmed I/O

Overview of Programmed I/O

• Processor executes an I/O instruction by issuing command to appropriate I/O

module
• I/O module performs the requested action and then sets the appropriate bits in

the I/O status register – I/O module takes not further action to alert the
processor – it does not interrupt the processor

• The processor periodically checks the status of the I/O module until it
determines that the operation is complete

I/O Commands

The processor issues an address, specifying I/O module and device, and an I/O
command. The commands are:

• Control: activate a peripheral and tell it what to do
• Test: test various status conditions associated with an I/O module and its

peripherals
• Read: causes the I/O module to obtain an item of data from the peripheral and

place it into an internal register
• Write: causes the I/O module to take a unit of data from the data bus and

transmit it to the peripheral

Three Techniques for Input of a Block of Data

I/O Instructions

Processor views I/O operations in a similar manner as memory operations
Each device is given a unique identifier or address
Processor issues commands containing device address – I/O module must check
address lines to see if the command is for itself

I/O mapping

• Memory-mapped I/O

o Single address space for both memory and I/O devices
 disadvantage – uses up valuable memory address space

o I/O module registers treated as memory addresses
o Same machine instructions used to access both memory and I/O devices

 advantage – allows for more efficient programming
o Single read line and single write lines needed
o Commonly used

• Isolated I/O
o Separate address space for both memory and I/O devices
o Separate memory and I/O select lines needed
o Small number of I/O instructions
o Commonly used

Interrupt-Driven I/O

• Overcomes the processor having to wait long periods of time for I/O modules
• The processor does not have to repeatedly check the I/O module status

I/O module view point
• I/O module receives a READ command form the processor
• I/O module reads data from desired peripheral into data register
• I/O module interrupts the processor
• I/O module waits until data is requested by the processor
• I/O module places data on the data bus when requested

Processor view point
• The processor issues a READ command
• The processor performs some other useful work
• The processor checks for interrupts at the end of the instruction cycle
• The processor saves the current context when interrupted by the I/O module
• The processor read the data from the I/O module and stores it in memory
• The processor the restores the saved context and resumes execution

Design Issues

How does the processor determine which device issued the interrupt
How are multiple interrupts dealt with

Device identification
• Multiple interrupt lines – each line may have multiple I/O modules
• Software poll – poll each I/O module

o Separate command line – TESTI/O
o Processor read status register of I/O module
o Time consuming

• Daisy chain
o Hardware poll
o Common interrupt request line
o Processor sends interrupt acknowledge
o Requesting I/O module places a word of data on the data lines – “vector”

that uniquely identifies the I/O module – vectored interrupt
• Bus arbitration

o I/O module first gains control of the bus
o I/O module sends interrupt request
o The processor acknowledges the interrupt request
o I/O module places its vector of the data lines

Multiple interrupts
• The techniques above not only identify the requesting I/O module but provide

methods of assigning priorities
• Multiple lines – processor picks line with highest priority
• Software polling – polling order determines priority
• Daisy chain – daisy chain order of the modules determines priority
• Bus arbitration – arbitration scheme determines priority

Intel 82C59A Interrupt Controller

Intel 80386 provides
• Single Interrupt Request line – INTR
• Single Interrupt Acknowledge line – INTA
• Connects to an external interrupt arbiter, 82C59A, to handle multiple devices

and priority structures
• 8 external devices can be connected to the 82C59A – can be cascaded to 64

82C59A operation – only manages interrupts
• Accepts interrupt requests
• Determines interrupt priority
• Signals the processor using INTR
• Processor acknowledges using INTA
• Places vector information of data bus
• Processor process interrupt and communicates directly with I/O module

82C59A interrupt modes
Fully nested – priority form 0 (IR0) to 7 (IR7)
Rotating – several devices same priority - most recently device lowest priority
Special mask – processor can inhibit interrupts from selected devices

Intel 82C55A Programmable Peripheral Interface

• Single chip, general purpose I/O module
• Designed for use with the Intel 80386
• Can control a variety of simple peripheral devices

A, B, C function as 8 bit I/O ports (C can be divided into two 4 bit I/O ports)
Left side of diagram show the interface to the 80386 bus

Interface to a Keyboard/Display Terminal

Direct Memory Access

Drawback of Programmed and Interrupt-Driven I/O
• I/O transfer rate limited to speed that processor can test and service devices
• Processor tied up managing I/O transfers

DMA Function

• DMA module on system bus used to mimic the processor.
• DMA module only uses system bus when processor does not need it.
• DMA module may temporarily force processor to suspend operations – cycle

stealing.

DMA Operation

• The processor issues a command to DMA module

o Read or write
o I/O device address using data lines
o Starting memory address using data lines – stored in address register
o Number of words to be transferred using data lines – stored in data

register
• The processor then continues with other work
• DMA module transfers the entire block of data – one word at a time – directly

to or from memory without going through the processor
• DMA module sends an interrupt to the processor when complete

DMA and Interrupt Breakpoints during Instruction Cycle

• The processor is suspended just before it needs to use the bus.
• The DMA module transfers one word and returns control to the processor.
• Since this is not an interrupt the processor does not have to save context.
• The processor executes more slowly, but this is still far more efficient that

either programmed or interrupt-driven I/O.

DMA Configurations

• Single bus – detached DMA module
• Each transfer uses bus twice – I/O to DMA, DMA to memory
• Processor suspended twice

• Single bus – integrated DMA module
• Module may support more than one device
• Each transfer uses bus once – DMA to memory
• Processor suspended once

• Separate I/O bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once – DMA to memory
• Processor suspended once

I/O Channels and Processors

The Evolution of the I/O Function

1. Processor directly controls peripheral device
2. Addition of a controller or I/O module – programmed I/O
3. Same as 2 – interrupts added
4. I/O module direct access to memory using DMA
5. I/O module enhanced to become processor like – I/O channel
6. I/O module has local memory of its own – computer like – I/O processor

• More and more the I/O function is performed without processor involvement.
• The processor is increasingly relieved of I/O related tasks – improved

performance.

Characteristics of I/O Channels

• Extension of the DMA concept
• Ability to execute I/O instructions – special-purpose processor on I/O channel –

complete control over I/O operations
• Processor does not execute I/O instructions itself – processor initiates I/O

transfer by instructing the I/O channel to execute a program in memory
• Program specifies

o Device or devices
o Area or areas of memory
o Priority
o Error condition actions

Two type of I/O channels
• Selector channel

o Controls multiple high-speed devices
o Dedicated to the transfer of data with one of the devices
o Each device handled by a controller, or I/O module
o I/O channel controls these I/O controllers

• Multiplexor channel
o Can handle multiple devices at the same time
o Byte multiplexor – used for low-speed devices
o Block multiplexor – interleaves blocks of data from several devices.

The External Interface: FireWire and Infiniband

Type of Interfaces

Parallel interface – multiple bits transferred simultaneously
Serial interface – bits transferred one at a time

I/O module dialog for a write operation
1. I/O module sends control signal – requesting permission to send data
2. Peripheral acknowledges the request
3. I/O module transfer data
4. Peripheral acknowledges receipt of data

FireWire Serial Bus – IEEE 1394

• Very high speed serial bus
• Low cost
• Easy to implement
• Used with digital cameras, VCRs, and televisions

FireWire Configurations

• Daisy chain
• 63 devices on a single port – 64 if you count the interface itself
• 1022 FireWire busses can be interconnected using bridges
• Hot plugging
• Automatic configuration
• No terminations
• Can be tree structured rather than strictly daisy chained

FireWire three layer stack:

Physical layer
• Defines the transmission media that are permissible and the electrical and

signaling characteristics of each
• 25 to 400 Mbps
• Converts binary data to electrical signals

• Provides arbitration services
o Based on tree structure
o Root acts as arbiter
o First come first served
o Natural priority controls simultaneous requests – nearest root
o Fair arbitration
o Urgent arbitration

Link layer
• Describes the transmission of data in the packets
• Asynchronous

o Variable amount of data and several bytes of transaction data transferred
as a packet

o Uses an explicit address
o Acknowledgement returned

• Isochronous
o Variable amount of data in sequence of fixed sized packets at regular

intervals
o Uses simplified addressing
o No acknowledgement

Transaction layer
• Defines a request-response protocol that hides the lower-layer detail of

FireWire from applications

FireWire Protocol Stack

FireWire Subactions

InfiniBand

• Recent I/O specification aimed at high-end server market
• First version released early 2001
• Standard for data flow between processors and intelligent I/O devices
• Intended to replace PCI bus in servers
• Greater capacity, increased expandability, enhanced flexibility
• Connect servers, remote storage, network devices to central fabric of switches

and links
• Greater server density
• Independent nodes added as required
• I/O distance from server up to

o 17 meters using copper
o 300 meters using multimode optical fiber
o 10 kilometers using single-mode optical fiber

• Transmission rates up to 30 Gbps

InfiniBand Switch Fabric

InfiniBand Operations

• 16 logical channels (virtual lanes) per physical link
• One lane for fabric management – all other lanes for data transport
• Data sent as a stream of packets
• Virtual lane temporarily dedicated to the transfer from one end node to another
• Switch maps traffic from incoming lane to outgoing lane

InfiniBand Communication Protocol Stack

