Array and Stacks

e An array is a collection of data items, all of the same type, accessed using a common name.

e A one-dimensional array is like a list; A two dimensional array is like a table; The C language places
no limits on the number of dimensions in an array, though specific implementations may.

e Some texts refer to one-dimensional arrays as vectors, two-dimensional arrays as matrices, and use the
general term arrays when the number of dimensions is unspecified or unimportant.

/* Sample Program Using Arrays */

#include <stdlib.h>
#include <stdio.h>
int main(void) {
int numbers[10];
int i, index = 2;
for(1=0;1<10; i++)
numbers[1] =1* 10;

numbers[8 | =25;

numbers[5] =numbers[9]/ 3;

numbers[4 | += numbers| 2 |/ numbers|[1 |;

numbers| index | =5;

++numbers| index];

numbers[numbers| index++]] = 100;

numbers[index | = numbers[numbers[index +1]/7]--;

for(index = 0; index < 10; index++)
printf("numbers[%d | = %d\n", index, numbers| index]);

}+ /* End of second sample program */

An array of arrays is known as 2D array. The two dimensional (2D) array in C programming is also known as
matrix. A matrix can be represented as a table of rows and column
Example:

#include<stdio.h>
int main(){
/* 2D array declaration™®/
int disp[2][3];
/*Counter variables for the loop*/
int1, j;
for(i=0; i<2; i++) {
for(j=0;<3;j++) {
printf("Enter value for disp[%d][%d]:", 1, j);
scanf("%d", &disp[i][j]);

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

b
}

//Displaying array elements
printf("Two Dimensional array elements:\n");
for(i=0; i<2; i++) {
for(j=0;j<3;j++) {
printf("%d ", disp[i][j]);
if(j==2){
printf("\n");

*Sparse Matrix:

Any matrix is called a Sparse Matrix in C if it contains a large number of zeros. The mathematical formula
behind this C Sparse Matrix is: T >= (m * n)/2, where T is the total number of zeros.

/* C Program to check Matrix is a Sparse Matrix or Not */
#include<stdio.h>

int main()

{

int 1, j, rows, columns, a[10][10], Total = 0;

printf("\n Please Enter Number of rows and columns : ");
scanf("%d %d", &i, &));

printf("\n Please Enter the Matrix Elements \n");
for(rows = 0; rows < i; rows++)

{
for(columns = 0;columns < j;columns++)
{
scanf("%d", &a[rows][columns]);
h
}
for(rows = 0; rows < i; rows++)
{
for(columns = 0; columns < j; columns++)
{
if(a[rows][columns] == 0)
{
Total++;
h
}

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

}

if(Total > (rows * columns)/2)

{

printf("\n The Matrix that you entered is a Sparse Matrix ");

printf("\n The Matrix that you entered is Not a Sparse Matrix ");

return 0;

Stack operation:

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is named stack as
it behaves like a real-world stack, for example — a deck of cards or a pile of plates, etc.

.‘-‘-—_-l-"r-'
T ——
h“--—-""

A real-world stack allows operations at one end only. For example, we can place or remove a card or plate
from the top of the stack only. Likewise, Stack ADT allows all data operations at one end only. At any given
time, we can only access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is placed
(inserted or added) last, is accessed first. In stack terminology, insertion operation is called PUSH operation
and removal operation is called POP operation.

Stack Representation

The following diagram depicts a stack and its operations —

g

B

m

=

2

%

Last In - First Out

Pop
Data Element Data Elameant
Data Elament Data Elament
|| Data Element Data Elemant

|
; Data Element Data Element
j Data Element Data Element
Stack Stack

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can either be a fixed
size one or it may have a sense of dynamic resizing. Here, we are going to implement stack using arrays, which
makes it a fixed size stack implementation.

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from these basic
stuffs, a stack is used for the following two primary operations —

e push() — Pushing (storing) an element on the stack.
e pop() — Removing (accessing) an element from the stack.
When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the following
functionality is added to stacks —

o peek() — get the top data element of the stack, without removing it.
e isFull() — check if stack is full.
o isEmpty() — check if stack is empty.

***Pysh Operation

The process of putting a new data element onto stack is known as a Push Operation. Push operation involves a
series of steps —

e Step 1 — Checks if the stack is full.

o Step 2 — If the stack is full, produces an error and exit.

o Step 3 — If the stack is not full, increments top to point next empty space.
o Step 4 — Adds data element to the stack location, where top is pointing.

o Step 5 — Returns success.

E Push Operation

top—— E
top—— D o}
o c

Stack Stack

If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically.

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

*** Aloorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows —

begin procedure push: stack, data
if stack is full

return null
endif

top «<— top + 1
stack[top] «— data

end procedure

Implementation of this algorithm in C, is very easy. See the following code —

Example

void push(int data) {
if(lisFull()) {
top = top + 1;
stack[top] = data;
} else {
printf("Could not insert data, Stack is full.\n");
}
}

**%*Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In an array
implementation of pop() operation, the data element is not actually removed, instead top is decremented to a
lower position in the stack to point to the next value. But in linked-list implementation, pop() actually removes
data element and deallocates memory space.

A Pop operation may involve the following steps —
o Step 1 — Checks if the stack is empty.
o Step 2 — If the stack is empty, produces an error and exit.
o Step 3 — If the stack is not empty, accesses the data element at which top is pointing.

e Step 4 — Decreases the value of top by 1.

Pop Operation /' =

o Step 5 — Returns success.

top ﬁ! E |

Stack

tOp i-' (=]

Stack

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

*** Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows —

begin procedure pop: stack

if stack is empty
return null
endif

data « stack[top]
top «—top-1

return data

end procedure

Implementation of this algorithm in C, is as follows —

Example

int pop(int data) {

if(lisempty()) {
data = stack[top];
top=top-1;
return data;
} else {
printf("Could not retrieve data, Stack is empty.\n");

b
b

Infix Notation

We write expression in infix notation, e.g. a - b + ¢, where operators are used in-between operands. It is easy
for us humans to read, write, and speak in infix notation but the same does not go well with computing devices.
An algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands. For example, +ab.
This is equivalent to its infix notation a + b. Prefix notation is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style, the operator is postfixed to
the operands i.e., the operator is written after the operands. For example, ab+. This is equivalent to its infix
notation a + b.

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

%%Postfix Evaluation Algorithm

Step 1 — scan the expression from left to right

Step 2 — if it is an operand push it to stack

Step 3 —if it is an operator pull operand from stack and perform operation
Step 4 — store the output of step 3, back to stack

Step 5 — scan the expression until all operands are consumed

Step 6 — pop the stack and perform operation

Application of Stack:

Expression Evaluation

Stack is used to evaluate prefix, postfix and infix expressions.

Expression Conversion

An expression can be represented in prefix, postfix or infix notation. Stack can be used to convert one form of
expression to another.

Syntax Parsing

Many compilers use a stack for parsing the syntax of expressions, program blocks etc. before translating into
low level code.

Backtracking

Suppose we are finding a path for solving maze problem. We choose a path and after following it we realize
that it is wrong. Now we need to go back to the beginning of the path to start with new path. This can be done
with the help of stack.

Parenthesis Checking

Stack is used to check the proper opening and closing of parenthesis.

String Reversal

Stack is used to reverse a string. We push the characters of string one by one into stack and then pop character
from stack.

Function Call

Stack is used to keep information about the active functions or subroutines.

*Limitation of Stack:

e Stack memory is very limited.

o Creating too many objects on the stack can increase the risk of stack overflow.

e Random access is not possible.

e Variable storage will be overwritten, which sometimes leads to undefined behavior of the function or
program.

o The stack will fall outside of the memory area, which might lead to an abnormal termination.

Representation of Stack:

Let MaxStk=8, the array Stack contains M, N, O in it. Perform operations on it

1 2 3 4 5 6 ¥ 8
M N O
Top=3

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

ii.

111.

1v.

vi.

after insertion of P, Q

pop 3 elements

push A, B, C

push D, E, F, G

push X

pop 5 elements

pop 4 elements

***Stack implementation Program using C:

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

1 2 3 4 5 6 7 8
M N o P Q
Top =5

1 2 3 4 5 6 ¥ 8
M N

Top =2
1 2 3 < 5 6 7 8
M N A B c

Top=5
1 2 3 4 5 6 7 8

M N A B C D E F

Overflow Condition as Top=MaxStk Top=8

1 2 3 < 5 6 7 8

M N A B c D E F

Overflow Condition as Top=MaxStk Top=28
1 2 3 4 5 6 ¥ 8
M N A

Top=3
1 2 3 4 5 6 7 8
Top=0 Underflow Condition as Top = 0

#include<stdio.h>
int stack[100],choice,n,top,x,1;
void push(void);
void pop(void);
void display(void);
int main()
{
//clrscr();
top=-1;
printf("\n Enter the size of STACK[MAX=100]:");
scanf("%d",&n);
printf("\n\t STACK OPERATIONS USING ARRAY™");
printf("\n\t-- - ");
printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4. EXIT");
do
{
printf("\n Enter the Choice:");
scanf("%d",&choice);
switch(choice)
{
case 1:
{
push();
break;
}
case 2:
{
pop();
break;
}
case 3:
{
display();
break;
}

case 4:

{
printf("\n\t EXIT POINT ");
break;

}

default:

{
printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

}

b
}

while(choice!=4);
return 0;

h

BCA_DS_Notes | Mr

. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

void push()
{
if(top>=n-1)

{
printf("\n\tSTACK is over flow");

}

else
{
printf(" Enter a value to be pushed:");
scanf("%d",&x);
top++;
stack[top]=x;
h
h
void pop()
{
if(top<=-1)
{
printf("\n\t Stack is under flow");

}
else
{
printf("\n\t The popped elements is %d",stack[top]);
top--;
b
}
void display()
{
if(top>=0)
{
printf("\n The elements in STACK \n");
for(i=top; 1>=0; i--)
printf("\n%d",stack[1]);
printf("\n Press Next Choice");
b
else
{
printf("\n The STACK is empty");

}

BCA_DS_Notes | Mr. Tathagata Roy Chowdhury, Asst. Prof, Dept. of CSE

10

